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Abstract—Combining the images of multiple airborne cameras is a common way to achieve a higher scene coverage
in Wide Area Motion Imagery (WAMI). This paper proposes a novel approach, named Dynamic Homography (DH), to
stitch multiple images of an airborne array of ’non-rigid’ cameras with ’narrow’ overlaps between their FOVs. It estimates
the inter-views transformations using their underlying geometry namely the relative angles between their local coordinate
systems in 3D. A fast and robust optimization model is used to minimize the errors between the feature correspondences
which takes place when a new set of images are acquired from the camera array. The minimum number of required
feature correspondences between each adjacent pair of views is only two, which relaxes the need to have a large overlap
in their FOVs. Our quantitative and qualitative experiments show the superiority of the proposed method compared to the
traditional ones.

Index Terms—WAMI, image registration, homography, image stitching.

I. INTRODUCTION
Wide Area Motion Imaging [1] (WAMI) sensing presents a unique

challenge of projecting (georeferencing) many well-resolved, stable
pixels into a world map. The best WAMI systems cover areas of tens
of square miles while providing the ability to digitally zoom into
small areas maintaining high resolution. Large WAMI systems require
hundreds of megapixels and even gigapixels of resolution. Achieving
this resolution requires the use of multiple cameras mounted in
arrays to make a large virtual camera covering the area of interest.
Stitching the imagery between such cameras requires precise pixel-
level alignment, and such alignment generally requires rigid mounts
and well-controlled camera geometries. This can require expensive
and heavy measures, such as precisely-milled camera mounts that
are created out of a single billet of metal, as well as lenses that
are specially engineered to ensure constant focal parameters. Most
importantly, the rigid mounting requirement greatly increases the
cross-sectional area required for large camera arrays, with potentially
ruinous effects on the drag properties of an aircraft. By relaxing the
requirement for consistently precise camera alignment, new designs
for large camera gimbal systems can be contemplated. This includes
streamlined designs in which cameras can be placed in long, narrow
pods or built into longitudinal aircraft structures. The cameras can
have imprecise articulation in which alignment is constantly changing.
Furthermore, less expensive, lighter commercial lenses can be used
that are not designed for high thermal stability. Camera arrays can
be built to arbitrary scales, and they can be placed into structures
that are cheaper, lighter, and more well-suited for aerospace uses,
such as carbon fiber and many plastics. In order to relax the need
for precision camera alignment, however, the stitching parameters
must be computed on a frame-by-frame basis in real time using
computing hardware that is readily available on the aircraft. The
end result of stitching is equivalent to a large virtual image formed
by a computed homography, a 3x3 matrix that maps pixel locations
between from each camera image into the larger image. In the case
of “dynamic” homography, this mapping must be computed for each
frame of imagery by aligning the cameras together. In order to
precisely estimate such homography transformations, there needs to
be a relatively large amount of overlap between the Field-Of-View
(FOV) of the cameras. Although this is the most common approach, it
is against the idea of maximum utilization of the pixels. Alternatively,

one can use one (or more) redundant camera(s) with a wider FOV
that is dominant to other cameras’ FOV. This approach is not often
desired in Unmanned Aerial Vehicles (UAVs) due to its weight,
space, and power redundancies.

This paper proposes a novel approach to stitching multiple images
(and form a large virtual image) of an airborne array of cameras
with narrow overlaps between their FOVs. The proposed approach
is called Dynamic Homography (DH) which aims at analytically
optimizing the inter-views transformation estimation using their
underlying geometry, namely the relative angles between their local
coordinate systems in 3D. A fast and robust optimization model is used
to minimize the errors between the feature correspondences which
takes place when a new set of images are acquired from the camera
array. The minimum number of required feature correspondences
between each adjacent pair of views is only two, which relaxes the
need to have a large overlap in their FOVs.

Related Works: He et. al. [2] proposed a panoramic video stitching
method for near ground-mounted cameras (with PTZ) for surveillance.
A dynamic estimation of homography for visual-servoing for hand-
held/robot is introduced in [3]. A method for addressing parallax
artifacts in video stitching of linear camera arrays was discussed in
[4]. Zhou et. al in [5] proposed an approach for stitching large area
UAV images using Structure-from-Motion technique. Generating a
panorama image using a set of multi-camera system is proposed in
[6]. An image stitching technique in a multi-camera setup with large
FOV is introduced in [7].

II. DYNAMIC HOMOGRAPHY ESTIMATION
A projective Homography is a 3× 3 transformation matrix which

provides a direct mapping between two (camera) images of a common
Euclidean scene plane. The homography transformation mapping the
images of a 3D point X 9 lying on an Euclidean plane, c, from the
image �2 (of camera �2) to the image �1 (of camera �1), is expressed
by x̃1, 9 = Hc

2→1x̃2, 9 , where x̃1, 9 and x̃2, 9 are the 2D homogeneous
coordinates of the images of X 9 on �1 and �2, respectively. The
homography H2→1, induced by plane c, is analytically defined by

Hc = K1 (R +
1
3

n.tᵀ)K2 (1)

where K1 and K2 are respectively the intrinsic parameters of the two
cameras, defined as 3 × 3 upper triangular matrices with the focal



length of 5 (in pixels) and the principal point of (D, E) [8]. In (1), R
and t are the rotation matrix and translation vector from the coordinate
system of �2 to the one in �1, n is the normal of plane c, and 3 is
the euclidean distance between c and the coordinate system of �2.
Notice that this (perspective) homography is valid only for the specific
plane c (called induced by the plane). In practice, such a homography
matrix is not calculated from its analytical form of Eq. (1), as the
involved parameters (i.e. the relative transformation between the two
cameras and the plane 3D geometry) are not generally available.
Instead, its eight elements (normalized to its 9th element due to
being up to a scale, yielding to eight Degree Of Freedom-DOF):

H =


ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 1

 (2)

is estimated through the Direct Linear Transform [8] method given a
set of point correspondences (minimum of four) between the views
(e.g. from an image feature matching process). In some setups a
reduced form of (2), known as affine homography, is used which
ignores the perspective components and has 6-DOF:

H0 =


0 1 2

3 4 5

0 0 1

 (3)

In a special case, where the underlying scene is relatively far from the
cameras (i.e. 3 →∞) and/or the translation between the two camera
coordinate systems is zero (or negligible), (1) becomes simplified
to

H∞2→1 = H2→1 = K1R2→1K−1
2 = K1R1Rᵀ2 K−1

2 (4)

where R1 and R2 are the rotation matrices of �1 and �2, respectively.
(4) is known as infinite homography. As one can see, this form of
homography only has 3-DOF in terms of the extrinsic parameters.
For WAMI multi-camera rig, the mentioned criteria (i.e. 3 → ∞
and/or t→ 03×1) are held, allowing to use the infinite homography
with a reduced number of parameters instead of its general form
in (2). As emphasized in [9], estimating the 3D rotation matrix R2→1

in (4) between two camera coordinates, which only includes 3-DOF,
is significantly more stable and robust than estimating a full 8-DOF
homography (2), or even its 6-DOF form (3). The reason to this is
not only due to having a reduced number of parameters, but also to
the ability to enforce the right constraints (only a 3-DOF rotation
between two cameras) that matches the geometry of the cameras
their physical setup (model based). This prevents estimating other
unnecessary constraints (additional 5-DOF in the case of perspective
and extra 3-DOF in the case of affine) that do not apply to the
actual geometric model. Another advantage of our approach is that
the samples (feature correspondences) between the two views do not
need to be well distributed over the two image frames, which is a
strong requirement in a general homography estimation for achieving
accurate results. As a matter of fact, our approach works with only
a tiny overlap between the FOVs with as low as only two feature
(point) correspondences over the narrow intersected stripe. This helps
in maximizing the pixel utilization in an UAV WAMI setup, which
is always an important factor.

Knowing the three rotation angles between two cameras:

r3×1 =
[
A>;; ?8C2ℎ H0F

]ᵀ
(5)

one can use (4) to analytically construct the corresponding homog-
raphy matrix H = K1RK−1

2 , where

R3×3 = R(r3×1) (6)

and R is a function which converts a angle-axis rotation vector to
a rotation matrix (we use the Rodrigues formula for this). A very
rough estimate (with a few degrees error tolerance) of the angles
in (5), r̂, is assumed to be available (e.g. via the CAD design or
using [10]). A non-linear least squares (LS) optimization can be
used to refine and optimize the rotation angles. Assume to have <
feature correspondences (homogeneous) between the two images,
{(x̃1, 9 , x̃2, 9) | 9 = 1 . . . <}, the following cost function is defined:

4 9 = ‖x2, 9 − Π(Hx̃1, 9 ) ‖ (7)

where, 4 9 represents the euclidean distance (in pixels) between the
9 th feature point (x1, 9) on the image plane �1 (of �1) and its pair (x2, 9)
on �2 (of �2) after mapping to �1 using the analytical homography

H = K1R(r̂)K−1
2 . (8)

Π(x̃) in (7) is a function that normalize a homogeneous vector to
its 2D euclidean form. Therefore one can define the LS problem as

r = arg min
r̂

<∑
9=1

‖x1, 9 − Π(K1R(r̂)K−1
2 x̃2, 9 ) ‖2 (9)

An iterative non-linear solver such as Levenberg Marquardt can be
used to find an optimum rotation vector r in (10), while minimizing
the errors between all pairs of feature correspondences.

The DLT homography estimation algorithm is only robust to the
type of the noise caused by the measurements of the feature point
positions. However, in real scenarios the feature correspondences are
often contaminated by false feature matches (known as mismatches).
Such spurious feature correspondences (which do not represent an
identical 3D point in the scene) are called outliers. The presence
of outliers often lead to an invalid or erroneous DLT estimation
of homography. The most commonly used robust estimator in the
traditional homography estimation methods is RANSAC (Random
Sample Consensus) [8] which is based on ’randomly’ picking the
minimal set of the point correspondences (4 pairs, in case of general
homography) required for estimating a DLT model, counting the
consensus among the remaining samples and repeating this random
selection for a predefined number of times. Our proposed method,
unlike the traditional ones, do not use a RANSAC-based DLT model
estimation. In other words, we do not just algebrically estimate a
homography from the point correspondences (samples), but instead
we analytically construct it from the underlying geometry of the
involved cameras (their relative rotations). Thus we wisely avoid
RANSAC (or any other similar combinatorial random process) due
its drawbacks [11]. However, to battle with the outliers, we use the
Cauchy (or Lorentzian) robust function [11], yielding the following
non-linear least squares formula:

{r, 51, 52 } = arg min
r̂, 51 , 52

<∑
9=1

12 log(1 + ( ‖x1, 9 − Π(K1R(r̂)K−1
2 x̃2, 9 ) ‖)2/12)

(10)
where 1 is a user defined parameter. If the focal lengths are known
(e.g. by calibrating each single camera independently using [12]),
then (10) will have three variables (the components of the rotation
vector r) to solve for. When no focal lengths are available from
a calibration process or when they are changed on the fly (either
intentionally or by external factors such as temperature/vibration),
then a ’rough’ estimate of the focal length for each camera can be
used for initialization in (10).

The introduced two-camera homography estimation can be ex-
tended to more than a pair. With no loss of generality, we extend it
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Fig. 1: Raw sample frames used in our experiments. Left to right and top to bottom:
Edgewood Walmart (New Mexico), Edgewood Smith’s Pharmacy (New Mexico),
Gaineville (Florida) and Matanzas Inlet (Florida). Each image in each dataset is labelled
by TL (Top-Left), TR (Top-Right), BL (Bottom-Left) and BR (Bottom-Right).

Fig. 2: Left: The four-camera WAMI system with a pinion gimbal. Right: Geometric
representation of the cameras’ coordinate systems (blue vectors) in a 4-camera setup.
One of the camera’s coordinate system (TR) is assumed as the reference. The other
cameras have their coordinate systems defined relative to the reference TR, each by a
3 × 3 rotation matrix (red arrows).

to a 4-camera setup (Fig. 2-Left), however, the method is scale-able
and can be extended to a larger camera array. Fig. 2-Right depicts
the geometric relation of the images of this 4-camera system. Each
camera/image is labeled as TL (top-left), TR (top-right), BR (bottom-
right) and BL (bottom-left). They are mounted on a pinion gimbal
such a way that in any gimbal lock position, there is a (narrow) strip
of overlap on the FOV between these pairs: ()!,)'), ()!, �!),
(�!, �') and (�',)'). The transformations between the camera
references are defined by their relative rotations. Notice that these
relative rotations are not constant and are subject to change at every
moment due to the mechanical constraint. With no loss of generality,
we define TR as the local reference in our solution. We aim to find
the following three homography matrices that map the images of TL,
BL and BR to the image of TR (see the red arrows in Fig. 2-Right):

{H) !→) ' ,H�!→) ' ,H�'→) ' } (11)

and compose a single larger image out of the four camera images.
As there might be no direct FOV overlap between the BL and the
reference (TR), a direct cost function between them can not be defined
to optimize their relative angles and consecutively their homography
H�!→) '. We address this by simply defining two transitivity relations
to connect the BL image to the TR one (see the green arrows in Fig.
2-Right): {

H�!→) ' ≡ H) !→) ' H�!→) !

H�!→) ' ≡ H�'→) ' H�!→�'
(12)

This results to the expansion of the set in (11) to:

{H) !→) ' ,H�!→) ! ,H�!→�' ,H�'→) ' } (13)

We define a cost function for each member of the set in (13):

4
) !,) '

=

<
) !,) '∑
8=1

‖x
) ',8
− Π(K

) '
R(r̂) !,) ')K−1

) !
x̃
) !,8
) ‖2, (14)

4
�!,) !

=

<
�!,) !∑
9=1

‖x
) !, 9
− Π(K

) !
R(r̂�!,) !)K−1

�!
x̃
�!, 9
) ‖2, (15)

4
�!,�'

=

<
�!,�'∑
:=1

‖x
�',:
− Π(K

�'
R(r̂�!,�')K−1

�!
x̃
�!,:
) ‖2, (16)

4
�',) '

=

<
�',) '∑
;=1

‖x
) ',;
− Π(K

) '
R(r̂�',) ')K−1

�'
x̃
�',;
) ‖2 (17)

The final cost function is made by the aggregation of the four
cost functions of (14)- (17), yielding the following optimization
formulation:

min
r̂
) !,) '

,r̂
�!,) !

,r̂
�!,�'

,r̂
�',) '

, 5) ! , 5�! , 5�'

(
4
) !,) '

+ 4
�!,) !

+ 4
�!,�'

+ 4
�',) '

)
(18)

Once the four optimized rotation vectors and focal lengths are
calculated, the three final homography matrices in (11) can be
analytically constructed as:{ H) !→) ' = K

) '
R(r̂) !,) ')K−1

) !

H�!→) ' = K
) '
R(r̂) !,) ')R (r̂�!,) !)K−1

�!

H�'→) ' = K
) '
R(r̂�',) ')K−1

�'

(19)

The number of parameters to optimize in (18) is 12 (four rotation
vectors) for the whole optimization problem (plus the focal lengths
if desired).

III. EXPERIMENTS

This section presents the experiments carried out on the proposed
methods and some comparisons to other methods. The approach
has been implemented in C++. The used WAMI datasets consists
of four collections: Edgewood Walmart (NM), Edgewood Smith’s
pharmacy (NM), Gainesville (FL) and Matanzas Inlet (FL)– see
some exemplary raw frames in Fig. 1. They were imaged by the
four-camera hardware mounted on a pinion gimbal setup shown.
As typical in WAMI, the gimbal is locked to the center of area of
interest in each data collection, while the airplane flies an orbital
pattern around the area. At each gimbal position, each of the four
cameras is automatically (mechanically) adjusted to observe the
area. The relative rotations between the cameras are unknown and
vary at each time instance. The cameras are synced via a hardware
trigger. Each single camera provides a color image with the size of
6480 × 4871 pixels. Once a new set of (four) images are captured
by the system, their feature points (we use SIFT [13]) are extracted.
The (overlapped are of) two images in each pair of TL-TR, BL-TL,
BL-BR and BR-TR, are matched to obtain correspondences among
their tiny overlapped FOV. The obtained correspondences are directly
fed to the proposed analytical homography estimation model. We
quantitatively compared our method against both general (perspective)
and affine homography estimation methods. In order to accomplish
the quantitative comparisons, we generated a set of ground-truth
point correspondences in each pair of images. The geometric errors
in the homographies estimated by each of the three methods are
computed. Table 1 contains the mean and standard deviation of
the errors in each case, shown as (`, f). In this table, the ’many-
point’ label indicates that all available point correspondences (after
the feature extraction and matching) are used (including possible
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Perspective Affine DH DH Estimated Relative Angles (deg) to Reference
2pt 3pt many-pt 2pt 3pt many-pt 2pt 3pt many-pt 2pt 3pt many-pt

Edgewood,
NM-Walmart NP NP (53.75,

131.01) NP (28939.22,
97630.00)

(26.20,
31.08)

(10.13,
13.09)

(4.19,
3.11)

(2.23,
2.63)

TL=(-0.35, -7.99, 0.77) TL=(-0.31, -8.07, -0.19) TL=(-0.32, -8.05, 0.67)
BL=(-6.91,-7.98, 0.66) BL=(-6.89, -7.98, -0.05) BL=( -6.92, -8.02, 0.27)
BR=(-7.11, -0.08, 0.11) BR=(-7.14, -0.06, 0.18) BR= ( -7.14, -0.07, 0.13)

Gainesville,
FL NP NP (2622.23,

5993.91) NP (5312.94,
9259.83)

(66.09,
118.63)

(8.70,
8.75)

(6.42,
5.56)

(1.78,
1.87)

TL=( -0.05,-8.93, 1.47) TL=(0.00, -8.96, 1.39) TL=(-0.01,-9.01, 1.37)
BL=(-8.16, -9.20, 0.21) BL=(-8.15, -9.23, 0.80) BL=(-8.19, -9.28, 0.46)
BR=( -7.34, 0.14, 0.76) BR=(-7.30, 0.08, 0.20) BR=(-7.32, 0.08, -0.09)

Edgewood,
NM-Smith’s
Pharmacy

NP NP (97.19,
404.302) NP (148.49,

333.59)
(15.54,
34.72)

(12.80,
19.98)

(10.60,
17.31)

(2.42,
1.68)

TL=(-0.32, -8.00, 1.59) TL=( -0.32, -8.01, 1.31) TL = (-0.32, -8.06, 0.71)
BL=(-6.88, -8.03, 1.40) BL=(-6.89, -8.02, 1.12) BL = (-6.91, -8.03, 0.25)
BR= (-7.16, -0.08, 0.29) BR=(-7.14, -0.07, 0.28) BR=(-7.14, -0.07, 0.16)

Matanzas
Inlet, FL NP NP (2177.80,

64944.46) NP (426.9,
618.7)

(25.44,
37.14)

(5.94,
3.70)

(4.81,
2,95)

(1.70,
2.14)

TL=(-0.02, -8.97, 0.58) TL=(-0.22, -8.96, 0.62) TL=(-0.03, -8.98, 0.75)
BL=(-8.22, -9.17, 0.09) BL=(-8.22, -9.19, 0.09) BL=(-8.23, -9.20, -0.01)
BR=(-7.31, 0.12, -0.58) BR=(-7.32, 0.11, -0.57) BR=(-7.32, 0.12, -0.55)

Table 1: Quantitative comparison between three methods of estimating homographies for composing the images of the four cameras to one image. In each method, three cases are
used for each dataset: 2-point only, 3-point only and many points. NP notation indicates that the corresponding method cannot be applied. Notice that only our method can be
applied in all three cases. Moreover, our method recovers the relative angles between each of the three TL, BL, BT cameras and the reference camera TR.

Fig. 3: Results of 4-camera virtual image composition of Matanzas Inlet (Florida) dataset
(see the raw frames in Fig. 1) . when only 3 point correspondences are used. Left: The
affine approach, Right: The proposed DH method.

outliers) as the inputs. The ’3-point’ and ’2-point’ labels signify that
only three and two point correspondences (only inliers) are used to
estimate a homography matrix, respectively. Our proposed method,
DH, has the lowest error values in all combinations in all datasets.
In the ’3-point’ case, apart from the DH, only the affine approach
is able to estimate a homography, however, it results in relatively
large geometric errors. Among the three compared methods, DH is
the only one that is able to estimate a homography matrix using
only 2 point correspondences. As described earlier, the proposed
method (DH) establishes an analytical homography model directly
upon the relative angles between the cameras which corresponds to
their physical geometry. The last three columns of Table 1 show
the recovered angles (as a direct product) by DH in each dataset.
Notice that the presented angles (in degrees) in each row correspond
to a specific time instance as they vary time to time. Notice that in
WAMI, the cameras are far from the scene and slanted, therefore even
very small relative-angle changes can result in significant mapping
(projection to the terrain) error. As the error values in Table 1 show,
a perspective 8-element homography in most cases is unable to
estimate a valid image stitching (due to narrow overlap between the
FOVs). The affine homography mostly produce better results than the
general perspective one, however the DH results are observed to be
always superior in all of our experiments. As mentioned earlier, the
minimum number of required point correspondences between each
pair of images in affine and DH homography estimations are 3 and 2,
respectively. However, the solutions obtained from the affine method
have high errors (see Table 1) and are good only locally near their
image overlap area. Fig. 3-Left demonstrates an example of using
3-point to stitch the four-camera images in the affine approach, and
one can see how invalid the composed virtual image is. However, the
proposed DH method is able to provide a superior and decent result
even when only 2-point correspondences are used (Fig. 3-Right).

We included more experimental results and additional supporting
materials on https://twbot.github.io/DHPaperExtras.

IV. CONCLUSION

We proposed a novel method to produce a large/combined image
out of an array of cameras with very tiny overlaps between their
FOVs. It uses a model which optimizes the relative angles between
the cameras and derives analytical homographies from the recovered
angles. The requirements such as the precision camera alignment or
large overlap in the FOV of the cameras have been relaxed using the
proposed method. The comparative results indicate the superiority
and robustness of the proposed method.
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